City Scape

10 Continuous Improvement

  • Building the Business Case for Maintenance Improvement

    BoK Content Type: 
    Webcast
    BoK Content Source: 
    Practitioner Produced
    Original date: 
    Thursday, March 15, 2018
    While a host of factors influence profitability, maximizing your plant’s production output potential is arguably one of the facility’s greatest opportunities. An Asset Management, Reliability and Maintenance Strategic Plan can guide continuous improvement that’s aligned with bottom-line performance expectations for managing assets and people. This presentation will provide a framework approach for establishing your strategic asset management & reliability plan and the associated business case. Delegates will gain a fundamental understanding of how to establish a baseline: "know where you are," define where you’re going, who needs to be involved, how to measure the program’s progress and results, and what elements are essential for success.
  • Democratizing Predictive Maintenance through the Industrial Internet of Things

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2018
    Original date: 
    Wednesday, February 28, 2018
    With all the talk about big data and the IIoT, many are asking how can we use this in maintenance? The IIoT enables us to put sensors in any location where we might want to collect and analyze equipment condition and performance data. There are companies that offer predictive maintenance services, and some companies do this for themselves, in-house. Typically, it’s the larger companies that can afford this, but democratization has meant this has become available to a much broader market. But there are hurdles to taking advantage of this sort of continuous monitoring program, even for your most critical equipment. One, it’s expensive, whether you do it in-house or outsource. And two, there are data bottlenecks. Condition monitoring data comes is huge volumes and it’s all time-sensitive. Even if you can afford it, you need a data handling network with a lot of capacity. In this workshop, we’ll present a viable technical solution to the data bottleneck problem — based on a solution already proven in financial securities markets — that opens up these possibilities in the realm of plant continuous condition monitoring.
  • From Horseless Carriages to Cars – Disruptive Influencers and the Importance of Mindset Shift to Implement a Maintenance Management Strategy: A Case Study with JEFFBOAT

    BoK Content Type: 
    Article / Newsletter
    BoK Content Source: 
    Practitioner Produced
    Original date: 
    Thursday, January 11, 2018
    Jeffboat is a company with a long history.  Originally named the Howard Steamboat Company, Jeffboat is America’s largest inland ship builder and has been manufacturing ships for over 100 years.  Jeffboat has built such famous ships as the Mississippi Queen, the General Jackson showboat and the Casino Aztar riverboat casino. Like most manufacturing firms, Jeffboat has an enormous amount of equipment stretched out over a shipyard that is over a mile in length that is needed to make its boats.  Also like many old-line manufacturing firms, Jeffboat has both equipment and employees who have been there for several decades. Overall, because of the size of the shipyard and age of the equipment, Jeffboat’s maintenance was used to working in reactive mode.  There was no CMMS software in place and equipment was put into numerous Excel spreadsheets.  In addition, it was often hit or miss whether the right parts were in the stores room and finding the right equipment often took maintenance technicians a significant amount of time.  There was no Scheduler/Planner and maintenance procedures were done informally and based on need at that particular moment.When implementing a maintenance management strategy, a critical component is the resistance to change. Whether it is the introduction of new software or a complete overhaul of the maintenance function, the process of change represents disruptive technology (Christenson, …). According to Christenson, most changes are really improvements on something old and the old paradigms can be used. However, there are changes that organizations need to make that disrupt the dominant paradigm, rather than sustaining it. These are disruptive technologies and make the old things less important or obsolete. The problem with these disruptive changes is that people are still applying the old paradigms to the new realities. They are trying, in a sense, to understand the car as nothing more than a carriage without horses.
  • Uptime: Strategies for Excellence in Maintenance Management

    BoK Content Type: 
    Recommended Resources
    BoK Content Source: 
    Practitioner Produced
    Original date: 
    Tuesday, July 28, 2015
    Uptime describes the combination of activities that deliver fewer breakdowns, improved productive capacity, lower costs, and better environmental performance. The bestselling second edition of Uptime has been used as a textbook on maintenance management in several postsecondary institutions and by many companies as the model framework for their maintenance management programs.Following in the tradition of its bestselling predecessors, Uptime: Strategies for Excellence in Maintenance Management, Third Edition explains how to deal with increasingly complex technologies, such as mobile and cloud computing, to support maintenance departments and set the stage for compliance with international standards for asset management.This updated edition reflects a far broader and deeper wealth of experience and knowledge. In addition, it restructures its previous model of excellence slightly to align what must be done more closely with how to do it.The book provides a strategy for developing and executing improvement plans that work well with the new values prevalent in today's workforce. It also explains how you can use seemingly competing improvement tools to complement and enhance each other.This edition also highlights action you can take to compensate for the gradual loss of skills in the current workforce as "baby boomers" retire. This is the Text Book for Module 1 of the MMP Program.    It is available through PEMAC, contact pd@pemac.org for information on ordering.
  • Case Study: Lean Six Sigma in Maintenance Optimization

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2017
    Original date: 
    Wednesday, April 12, 2017
    Application of Lean Six Sigma methodology in the optimization of maintenance execution by using data and facts.    As always, equipment maintainability plays an important role in uptime. Besides the reduction of failure rates, the quick recovery from those failures or the successful execution of scheduled activities makes a considerable difference in availability indicators. The application of Lean tools and Six Sigma analysis contributes to the improvement of maintenance execution by applying the 5 steps of Lean Six Sigma methodology (Define, Measure, Analyze, Implement and Control) and using the tools associated with them. This presentation will discuss Lean Six Sigma theory, basic principles of the methodology and case studies showing the use of tools. Case 1 will illustrate the application of Lean Six Sigma in scheduled preventive maintenance for slurry pumps operating in the oil sands industry. Case 2 will examine how the use of Six Sigma analysis reduced the corrosion rate of tubes in a bank of 12 heat exchangers shell and tube type, which heat diluted bitumen upstream of a distillation tower. Both cases emphasize the importance of using data and facts to make decisions, including front end personnel, and the sustainment of implemented solutions. Presented at MainTrain 2017 
  • Key Components of Electrical Power System Maintenance

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2017
    Original date: 
    Monday, April 10, 2017
    As I spend more and more time in and around maintenance, reliability and asset management professionals, and though my own experiences as both an end user and now a contractor, it has become more and more clear that there is a definitive gap in most maintenance and reliability plans....the electrical system. This is not to say that there is not maintenance being done, or that people are not recognizing that their electrical system is critical. But do you understand what you are doing? Do you understand why? Is what is being done correct? Is the budget that is set aside for electrical adequate or too much? How do you know? What are the best practices and where do you start? As discussed this is not a technical presentation but rather a look at a basic electrical system and where an end user can start in regards to assuring themselves that they are doing the right things. There are some new technologies that are in the market place that can assist in determining if there is a potential problem with parts of your system...this presentation is not about those. Alternatively it is about "the basics", learning to walk before you can run: Looking at the system as a whole and learning where most trouble areas are; Assisting end-users in looking at past test results and planning next steps; Determining what needs to be done based on predictive tests such as transformer oil samples or IR scans, and what can be pushed into next year’s budget; What cannot be skipped because, if it is, it may not only cause catastrophic plant failures but potential fatalities. In conclusion what this presentation will focus on is assisting Maintenance Management professionals to treat their electrical assets with the same care that they keep their mechanical assets. It is not overly technical and you do not have to be an electrical professional to understand or benefit.Presented at MainTrain 2017 
  • Organizational Alignment

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2017
    Original date: 
    Thursday, April 6, 2017
    Effective maintenance plays a crucial role in today’s business. In order to manage costs, organizations attempt to get the most from their people and assets. Effective alignment between departments can dramatically improve asset reliability, reduce operation and maintenance costs and improve the effectiveness of the workforce.This presentation is intended to provide participants with the information and awareness they need to manage assets effectively. The need of cooperation between the operations and maintenance departments, as well as other departments such as supply chain will be discussed. Employees require more than high level principles; they must understand their role and how effective cooperation at all levels will provide value to the on-going operations, thereby allowing the business to remain profitable. Further, the presentation will examine the concept of Operational Excellence as the beginning of a transformation to a planned culture throughout the entire organization. Key to this topic is confirming who is in charge. Is the asset dictating how things should be done or are the people running it in charge?Asset management professionals often find themselves challenged by competing priorities in an effort to keep the system running. This session follows how maintenance tasks are initiated with work prioritization being a key element. Various roles will be discussed as well as the importance of scheduling and getting everyone on board with the schedule. Potential subtopics tailored to time restrictions: (1) Why do planned maintenance? (2) Cost of a break-in event, (3) Risk-based work selection, (4) Screening and approval of work, (5) Operators role in maintenance, (6) Operations, maintenance and supply chain departments’ role in scheduling, (7) Operations and maintenance coordination and roles, and (8) Managing the daily work list.  Presented at MainTrain 2017 
  • Case Study: Implementing a Lubrication Program – Cameco Cigar Lake Operation

    BoK Content Type: 
    Presentation Slides
    Webcast
    BoK Content Source: 
    MainTrain 2017
    Original date: 
    Thursday, March 16, 2017
    Cigar Lake is Cameco’s newest uranium mine located in northern Saskatchewan. During construction it was decided that a lubrication program needed to be implemented to ensure that critical assets were properly maintained. The mine offers challenges in that there is not just one plant or area to setup. There is a fleet of equipment both underground and surface with mobile and stationary assets. In addition there is diesel power generation and a fleet of freeze compressors installed. Each area presents its own challenges and opportunities when setting up a program.There are several aspects of a lubrication program that need to work together to ensure reliability. This presentation will share Cigar Lake’s journey from ground zero towards a world class lubrication program, one that was featured in Machinery Lubrication’s 2016 Lube Room Challenge edition.Why a lubrication program is needed will be discussed. In addition, the improvements made to program management, storage and inventory management, cleanliness, product standardization and sampling will be presented. Lastly, some of the specialized assets in use at the mine will be highlighted and discussed on how they fit into the program. 
  • PM Optimization: Integrating Lean into your Maintenance Strategy

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2017
    Original date: 
    Saturday, February 4, 2017
    Preventive Maintenance (PM) Optimization is often thought of as an activity to improve the effectiveness of the maintenance strategy, looking at the activities in the PM routine and matching them with known failure modes. While this is the first step to improving any maintenance strategy, it is just a beginning. In order for an organization to achieve its highest performance, they not only need to do the right maintenance, but they also need to do it efficiently.This is where PM Optimization can unlock the hidden potential. When PM Optimization is combined with known and accepted Lean techniques, the efficiency of maintenance is truly unlocked. When performing PM Optimization, the team should be aware of the 8 types of waste: (1) Defects, (2) Overproduction, (3) Waiting, (4) Not utilizing talent, (5) Transportation, (6) Inventory excess, (7) Motion waste, and (8) Excess processing. Once the team is aware of the waste, there needs to be an unrelenting focus on eliminating the waste and minimizing planned downtime. To eliminate the waste, the team uses various Lean tools, such as SMED, 5s, and Visual Factory. When the 8 types of waste are targeted, the amount of planned downtime goes down, allowing higher levels of asset utilization. Presented at MainTrain 2017
  • Reliability Centered Maintenance (RCM) - KPI's for Measuring Success

    BoK Content Type: 
    White Paper
    BoK Content Source: 
    PEMAC Produced
    Original date: 
    Monday, March 7, 2016
    This paper was developed as a collaboration between PEMAC members at the initiative of the  GTA Chapter. The purpose of the paper is to provide maintenance and reliability professionals with the key KPI’s that should be used to measure the effectiveness and success of an RCM program. First the whitepaper will explore where and when to apply RCM.Reliability Centered Maintenance (RCM) is a rigorous risk management methodology widely used to improve the availability of physical assets by determining the optimal failure management strategies for those assets in their present or planned operating context. Because it is a resource intensive methodology it is typically used in high-risk mission-critical contexts. The failure management strategies that are output from an RCM analysis might include preventive maintenance, predictive maintenance, run-to-failure strategies, and design or operating process changes. RCM produces an array of business benefits including:  Increased reliability and availability leading to increased levels of production or service delivery capability, potentially increasing revenue  Increased levels of quality and precision,  Increased levels of compliance with environmental regulations and standards  Increased levels of safety, and  Lower operating costs. These benefits translate into increased business stability and predictability which can lead to more favorable treatment by investors, lenders and insurers, and preferred supplier status for customers. When considering or implementing a methodology like RCM, it is important to understand the circumstances for which RCM is best suited and how best to measure success should you move forward with an RCM program. The purpose of this whitepaper is to provide maintenance and reliability professionals with the key KPI’s that should be used to measure the effectiveness and success of an RCM program. First the whitepaper will explore where and when to apply RCM.