City Scape

4.4 Preventive Maintenance

  • Demystifying Your R&M Pathway to Operational Success

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2019
    Original date: 
    Friday, March 22, 2019
    Metrics, best practices, more than 40 key elements to implement, challenges, and opportunities all combine to make a successful implementation difficult. Where do you start, and how do you know how to work on what matters? Once you understand how it’s all related, you can focus on the vital few to leverage the maximum ROI. This presentation will clarify the importance of culture and employee engagement, along with other key plant floor performance indicators that will be clarified with data. We'll look at the current state of R&M; what’s working and what's not; survival skills for the next decade; impacts of connected technologies (edge computing, big data, machine learning, AI, 3D printing, augmented reality); the importance of getting your data ready for what's coming next; and relationships between R&M and safety, people engagement, quality, throughput/uptime, and cost.
  • Living With The 6 Failure Patterns

    BoK Content Type: 
    Article / Newsletter
    BoK Content Source: 
    Practitioner Produced
    Original date: 
    Wednesday, May 9, 2018
    Most maintenance and reliability professionals have seen the six failure patterns (or failure hazard plots), described by Nowlan and Heap. Namely: Bathtub Curve, Wear Out, Fatigue, Initial Break-In, Random, and Infant Mortality. The majority of failures experienced are not directly related to age, but are the result of random or induced failures.   So how does this help when establishing a maintenance program?
  • We Need to do Better

    BoK Content Source: 
    MainTrain 2018
    Original date: 
    Monday, April 2, 2018
    There are many new lubricants, bearings, seals, and lube accessories, but we need to do better. Ninety percent of rolling element bearings don’t reach their design life, and the main contributing factors relate to lubrication. This can mean the wrong type, too much, too little, not often enough, or not applied right. Generally, such things can be easily corrected, but a learning, productive working environment is key. Similar to hydraulics, the leading cause of equipment issues is contamination. This can be water, dirt, and/or wear. In this presentation, we’ll give you a number of examples and study results, as well as present some solutions.
  • Increasing Operational Service Levels Using Preventative Maintenance Optimization Strategies: A Case Study of the LINK APM System at Toronto Pearson International Airport

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2018
    Original date: 
    Thursday, March 29, 2018
    In 2017, the LINK Automated People Mover (APM) at Toronto Pearson International Airport transported an average of 24,000 passengers per day — a 20% increase in passenger traffic from 2015, according to a 2017 report by the GTAA. To increase operational service levels, preventative maintenance optimization (PMO) initiatives were undertaken in 2015 and 2016 in co-ordination with the APM owner, manufacturer, and O&M service provider. The initiatives were designed to increase the overall day-to-day operational run-time of the LINK system while maintaining existing levels of safety and reliability. In this workshop, we’ll use the LINK APM system as a case study to discuss the requirements for successful PMO implementation, which include interorganizational communication and co-operation, RCM strategies, and due diligence as it relates to safety-related subsystems and processes. We’ll also offer a blueprint for similar optimization strategies.
  • PM ou PdM - où est l'équilibre ? - 15 octobre 2016

    BoK Content Type: 
    Webcast
    BoK Content Source: 
    Practitioner Produced
    Original date: 
    Saturday, October 15, 2016
    PM ou PdM - où est l'équilibre ?- Défaillance dans le cycle de vie- Les différents patron de défaillances (RCM)- Criticité et contexte opérationnel- Les différentes tactiques possibles- Introduction à la courbe PF- Comment choisir la bonne tactique
  • Building the Business Case for Maintenance Improvement

    BoK Content Type: 
    Webcast
    BoK Content Source: 
    Practitioner Produced
    Original date: 
    Thursday, March 15, 2018
    While a host of factors influence profitability, maximizing your plant’s production output potential is arguably one of the facility’s greatest opportunities. An Asset Management, Reliability and Maintenance Strategic Plan can guide continuous improvement that’s aligned with bottom-line performance expectations for managing assets and people. This presentation will provide a framework approach for establishing your strategic asset management & reliability plan and the associated business case. Delegates will gain a fundamental understanding of how to establish a baseline: "know where you are," define where you’re going, who needs to be involved, how to measure the program’s progress and results, and what elements are essential for success.
  • Democratizing Predictive Maintenance through the Industrial Internet of Things

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2018
    Original date: 
    Wednesday, February 28, 2018
    With all the talk about big data and the IIoT, many are asking how can we use this in maintenance? The IIoT enables us to put sensors in any location where we might want to collect and analyze equipment condition and performance data. There are companies that offer predictive maintenance services, and some companies do this for themselves, in-house. Typically, it’s the larger companies that can afford this, but democratization has meant this has become available to a much broader market. But there are hurdles to taking advantage of this sort of continuous monitoring program, even for your most critical equipment. One, it’s expensive, whether you do it in-house or outsource. And two, there are data bottlenecks. Condition monitoring data comes is huge volumes and it’s all time-sensitive. Even if you can afford it, you need a data handling network with a lot of capacity. In this workshop, we’ll present a viable technical solution to the data bottleneck problem — based on a solution already proven in financial securities markets — that opens up these possibilities in the realm of plant continuous condition monitoring.
  • Safer Condition Based Maintenance Inspections: Case Study of Implementation at an Ontario Bottling Facility.

    BoK Content Type: 
    Presentation Slides
    Webcast
    Presentation Paper
    BoK Content Source: 
    MainTrain 2018
    Original date: 
    Tuesday, February 27, 2018
    Electrical maintenance surveillance device (EMSD) technologies refer to condition-based monitoring technologies and equipment used every day to inspect electrical distribution assets. These surveillance and inspection systems determine the condition of the individual asset or system being inspected and include, but are not limited to, infrared thermography, airborne ultrasound, motor current analysis, partial discharge testing, corona cameras, and visual inspections. The implementation challenge is that the inspection and surveillance equipment used yield their most valuable results when inspecting electrical distribution equipment that’s operating under full load conditions. Doing so while working within the confines of CSA Z462 guidelines can be challenging when the equipment is both of danger to maintenance personnel and of value to the process they’re powering. The surveillance equipment implemented normally requires direct access or direct line of sight to the energized components inside the electrical system. This requires panels to be open, which is extremely dangerous. In this workshop, we’ll show you how EMSD technologies maintain the energized compartment’s closed and guarded condition, ensuring that personnel are not endangered. You’ll learn how the design allows the required test equipment to be used safely at any time, especially when equipment is under full load conditions. We’ll also present a case study from an Ontario beverage bottling facility, demonstrating how these devices can be easily retrofitted on existing electrical distribution equipment to become the nexus for an electrical infrastructure reliability program.
  • From Horseless Carriages to Cars – Disruptive Influencers and the Importance of Mindset Shift to Implement a Maintenance Management Strategy: A Case Study with JEFFBOAT

    BoK Content Type: 
    Article / Newsletter
    BoK Content Source: 
    Practitioner Produced
    Original date: 
    Thursday, January 11, 2018
    Jeffboat is a company with a long history.  Originally named the Howard Steamboat Company, Jeffboat is America’s largest inland ship builder and has been manufacturing ships for over 100 years.  Jeffboat has built such famous ships as the Mississippi Queen, the General Jackson showboat and the Casino Aztar riverboat casino. Like most manufacturing firms, Jeffboat has an enormous amount of equipment stretched out over a shipyard that is over a mile in length that is needed to make its boats.  Also like many old-line manufacturing firms, Jeffboat has both equipment and employees who have been there for several decades. Overall, because of the size of the shipyard and age of the equipment, Jeffboat’s maintenance was used to working in reactive mode.  There was no CMMS software in place and equipment was put into numerous Excel spreadsheets.  In addition, it was often hit or miss whether the right parts were in the stores room and finding the right equipment often took maintenance technicians a significant amount of time.  There was no Scheduler/Planner and maintenance procedures were done informally and based on need at that particular moment.When implementing a maintenance management strategy, a critical component is the resistance to change. Whether it is the introduction of new software or a complete overhaul of the maintenance function, the process of change represents disruptive technology (Christenson, …). According to Christenson, most changes are really improvements on something old and the old paradigms can be used. However, there are changes that organizations need to make that disrupt the dominant paradigm, rather than sustaining it. These are disruptive technologies and make the old things less important or obsolete. The problem with these disruptive changes is that people are still applying the old paradigms to the new realities. They are trying, in a sense, to understand the car as nothing more than a carriage without horses.
  • Debunking Risk Resiliency by Implementing a Risk-Based Maintenance Strategy

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2017
    Original date: 
    Tuesday, April 18, 2017
    Due largely to the release of ISO55000x:2014 family of standards, Asset Management is gaining worldwide acceptance as a valid business practice for asset-intensive organizations. The challenge that organizations now face is how to operationalize the principles and move it from “being understood in theory” to being “the way that we work”, to truly distill effective asset management practices and principles to the nooks and crannies of the organization. One key tenet of ISO55000x is the management of asset risk at all levels of asset interaction. On the other side, one area that has been struggling to understand asset management beyond maintenance management is the traditional Maintenance Department. This paper will capture the steps that Veolia North America is taking one of its Municipal Clients through to understand risk at the more granular levels and build risk resilience into its maintenance strategy.Yet for the average Maintenance Manager, the challenge of interpreting asset risk for the organization is still uncharted waters. There are several ways in which the traditional Maintenance Manager can understand the wide breadth of risks facing the asset, determine appropriate responses and communicate them to the appropriate stakeholders. In fact, one or more of these may already be in place in the organization but may not be seen as building risk resilience. This presentation will explore one methodology used by Veolia to develop an asset-centric, risk-based Maintenance Strategy at the City of Winnipeg’s, Waste Water Treatment Plants using a Maintenance Management Maturity Assessment.The City of Winnipeg’s Waste Water Department is at a very interesting juncture in its history, in that there are several major capital upgrades being undertaken, whilst the plants continue to run. The goal of the Maintenance Strategy is therefore two-fold. To maintain the existing levels of service at least whole life cost with risk balanced against the cost of meeting objectives, whilst ensuring that there is a plan to maximise maintenance for the future asset base to realise the benefit of the investment over the whole life of the assets. As a result, in 2016, in collaboration with its selected O&M improvement partner, Veolia North America, the City of Winnipeg’s Waste Water Treatment Plants, went on a path of discovery. Two significant tools of investigation were employed: 1. An Asset Management Maturity Assessment was conducted and 2. The City participated in the National Waste Water Benchmarking Initiative (NWWBI) Maintenance Task Force Survey implemented by AECOM. The Asset Management Maturity Assessment examined 8 fundamental areas of Maintenance Management and outlined positions of excellence that the City hoped to achieve both at the 1-year and 3-year mark from the date of assessment with 2017 being Year 1. The NWWBI Maintenance Task Force Survey examined 42 granular yet, over-lapping areas of Maintenance Management, with 18 of them reporting significant gaps for the City’s Waste Water Treatment Plants. The results of the two analyses were combined into eight (8) key Objectives and the underlying activities required to achieving them over the next three (3) years. These eight (8) Objectives are: 1. Implementation of Asset Condition Assessment Plan (ACAP) 2. Inventory Management Optimization Plan (IMOP) 3. Work Organization Improvement Plan (WOIP) 4. Implementation of Maintenance Quality Strategy (MQS) 5. Financial Capability Improvement Plan (FCIP) 6. Asset Registry Improvement Plan (ARIP) 7. Implementation of Document Management (DM) 8. Revision and Implementation of Asset Criticality Model (ACM)This presentation will examine the detailed plans for each objective, the inter-connectivity and alignment of the Objectives, the Road Map for the next 3 years, the processes for monitoring and continual improvement and the benefits of implementing this approach. Presented at MainTrain 2017