In our increasingly digitized and networked environment, the expectations for excellence in asset management are ever growing. While an abundance of maintenance and sensor data have become available, companies must develop the proper application of the data in their maintenance strategies. In this presentation, we’ll discuss the potential of your operational and maintenance data in the context of asset management, and explore different machine learning (ML) algorithms and how they may be leveraged to unleash hidden patterns in your asset management strategies. We’ll introduce some foundational topics required for ML, such as the taxonomy and data preparation steps critical to all ML approaches, the probability and statistics supporting ML, and how the evaluation of the quality of our models. C-MORE has actively applied machine ML methods to interesting real-world problems, such as the categorization of power generation units according to reliability characteristics, and anomaly detection in linear assets to optimize required maintenance actions. We’ll share a few of our case studies so participants can experience how ML methods can be used in maintenance, reliability and operations.
Dr. Janet Lam holds a PhD in Industrial Engineering from the University of Toronto. She has been working in the field of maintenance optimization since 2008, with an emphasis on optimal scheduling of inspections for condition-based maintenance. More recently, her research interests have extended to machine learning approaches for maintenance and asset management. Through her work at C-MORE, she has applied academic research directly with industry partners, including those in mining, utilities, transportation, and the military. As the Assistant Director of C-MORE, Janet is involved with cultivating strong relationships with industry partners and developing maintenance engineering resources that are both useful and current.