City Scape

10.4 Maintenance Practices Improvements

  • Implementing Self-Reporting Wrench Time Analysis In A Petrochemical Plant In Saudi Arabia And Its Effect On Maintenance Efficiency

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2019
    Original date: 
    Thursday, April 18, 2019
    Any plant, in order to maximize its production, must have a world-class maintenance team that takes care of every single piece of equipment in the field. Maintenance teams could be considered the superheroes of any plant, since they must always maintain and return the equipment in the fastest and most efficient way. Wrench time is the actual time a maintenance crew works on a piece of equipment, and wrench time analysis is used to measure the maintenance team's effectiveness. Many companies apply wrench time for a very limited time and do not go for a continuous way of study. This presentation will show a self-reporting wrench time case study that was implemented in a Saudi Arabian petrochemical plant. We'll aim to explore the effect of self-reporting wrench time and answer the following three questions: Does wrench time analysis increase maintenance efficiency? Does self-reporting wrench time lead to better maintenance efficiency? What is the impact of self-reporting wrench time on maintenance team performance?
  • Demystifying Your R&M Pathway to Operational Success

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2019
    Original date: 
    Friday, March 22, 2019
    Metrics, best practices, more than 40 key elements to implement, challenges, and opportunities all combine to make a successful implementation difficult. Where do you start, and how do you know how to work on what matters? Once you understand how it’s all related, you can focus on the vital few to leverage the maximum ROI. This presentation will clarify the importance of culture and employee engagement, along with other key plant floor performance indicators that will be clarified with data. We'll look at the current state of R&M; what’s working and what's not; survival skills for the next decade; impacts of connected technologies (edge computing, big data, machine learning, AI, 3D printing, augmented reality); the importance of getting your data ready for what's coming next; and relationships between R&M and safety, people engagement, quality, throughput/uptime, and cost.
  • Maintenance 4.0 - 20 février 2019

    BoK Content Type: 
    Webcast
    BoK Content Source: 
    Practitioner Produced
    Original date: 
    Wednesday, February 20, 2019
    Quelle est l’opportunité pour les gens de maintenance dans l’Industrie 4.0 ?- Constat de la maturité de la maintenance au Québec- Rappel de vieux concepts d’ingénierie de maintenance- Survol des concepts de l’Internet des objets et de l’Industrie 4.0- Analyse de l’opportunité 4.0
  • Reliability Centered Maintenance Re-Engineered RCM-R(r) - An Introduction

    BoK Content Type: 
    Presentation Slides
    Webcast
    Presentation Paper
    BoK Content Source: 
    Practitioner Produced
    Original date: 
    Monday, June 11, 2018
    Reliability Centered Maintenance – Reengineered, provides an optimized approach to a well established and highly successful method used for determining failure management policies for physical assets. It makes the original method that was developed to enhance flight safety, far more useful in a broad range of industries where asset criticality ranges from high to low. RCM-R® is focused on the science of failures and what must be done to enable long term sustainably reliable operations. If used correctly, RCM-R® is the first step in delivering fewer breakdowns, more productive capacity, lower costs, safer operations and improved environmental performance. Maintenance has a huge impact on most businesses whether its presence is felt or not. RCM-R® ensures that the right work is done to guarantee there are as few nasty surprises as possible that can harm the business in any way. RCM-R® addresses the shortfalls of RCM that have inhibited its broad acceptance in industry. Little new work has been done in the field of RCM since the 1990’s, yet demand for such a method, better adapted to industrial applications is higher than ever and growing. Demographics and ever more complex systems are driving a need to be more efficient in our use of skilled maintenance resources while ensuring first time success – greater effectiveness is needed. RCM-R® was developed to leverage on RCM’s original success at delivering that effectiveness while addressing the concerns of the industrial market. RCM-R® addresses the RCM method and shortfalls in its application. It modifies the method to consider asset and even failure mode criticality so that rigor is applied only where it is truly needed. It removes (within reason) the sources of concern about RCM being overly rigorous and too labor intensive without compromising on its ability to deliver a tailored failure management program for physical assets sensitive to their operational context and application. RCM-R® also provides its practitioners with standard based guidance for determining meaningful failure modes and causes facilitating their analysis for optimum outcome. It places RCM into the Asset Management spectrum strengthening the original method by introducing International Standard based risk management methods for assessing failure risks formally. RCM-R® employs quantitative reliability methods tailoring evidence based decision making whenever historical failure data is available.
  • Leading & Lagging KPIs, What Is The Difference?

    BoK Content Type: 
    Article / Newsletter
    BoK Content Source: 
    Practitioner Produced
    Original date: 
    Wednesday, May 9, 2018
    KPIs are often used to measure the past performance of a process, but did you know that they can be used to see into the future and predict the performance of the organization?KPIs can be used to measure past performance, or predict future performance. This is because there is a cause and effect relationship between leading and lagging KPIs. When a process is measured, it will in turn effect another process which is also being measured, providing insight to future performance.When Leading and Lagging KPIs are properly understood it provides unique insights to where the performance of the organization is going.
  • Developing a Stocking Strategy

    BoK Content Type: 
    Article / Newsletter
    BoK Content Source: 
    Practitioner Produced
    Original date: 
    Tuesday, May 8, 2018
    A Risk-Based Approach to Spares Management 
  • Democratizing Predictive Maintenance through the Industrial Internet of Things

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2018
    Original date: 
    Wednesday, February 28, 2018
    With all the talk about big data and the IIoT, many are asking how can we use this in maintenance? The IIoT enables us to put sensors in any location where we might want to collect and analyze equipment condition and performance data. There are companies that offer predictive maintenance services, and some companies do this for themselves, in-house. Typically, it’s the larger companies that can afford this, but democratization has meant this has become available to a much broader market. But there are hurdles to taking advantage of this sort of continuous monitoring program, even for your most critical equipment. One, it’s expensive, whether you do it in-house or outsource. And two, there are data bottlenecks. Condition monitoring data comes is huge volumes and it’s all time-sensitive. Even if you can afford it, you need a data handling network with a lot of capacity. In this workshop, we’ll present a viable technical solution to the data bottleneck problem — based on a solution already proven in financial securities markets — that opens up these possibilities in the realm of plant continuous condition monitoring.
  • Debunking Risk Resiliency by Implementing a Risk-Based Maintenance Strategy

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2017
    Original date: 
    Tuesday, April 18, 2017
    Due largely to the release of ISO55000x:2014 family of standards, Asset Management is gaining worldwide acceptance as a valid business practice for asset-intensive organizations. The challenge that organizations now face is how to operationalize the principles and move it from “being understood in theory” to being “the way that we work”, to truly distill effective asset management practices and principles to the nooks and crannies of the organization. One key tenet of ISO55000x is the management of asset risk at all levels of asset interaction. On the other side, one area that has been struggling to understand asset management beyond maintenance management is the traditional Maintenance Department. This paper will capture the steps that Veolia North America is taking one of its Municipal Clients through to understand risk at the more granular levels and build risk resilience into its maintenance strategy.Yet for the average Maintenance Manager, the challenge of interpreting asset risk for the organization is still uncharted waters. There are several ways in which the traditional Maintenance Manager can understand the wide breadth of risks facing the asset, determine appropriate responses and communicate them to the appropriate stakeholders. In fact, one or more of these may already be in place in the organization but may not be seen as building risk resilience. This presentation will explore one methodology used by Veolia to develop an asset-centric, risk-based Maintenance Strategy at the City of Winnipeg’s, Waste Water Treatment Plants using a Maintenance Management Maturity Assessment.The City of Winnipeg’s Waste Water Department is at a very interesting juncture in its history, in that there are several major capital upgrades being undertaken, whilst the plants continue to run. The goal of the Maintenance Strategy is therefore two-fold. To maintain the existing levels of service at least whole life cost with risk balanced against the cost of meeting objectives, whilst ensuring that there is a plan to maximise maintenance for the future asset base to realise the benefit of the investment over the whole life of the assets. As a result, in 2016, in collaboration with its selected O&M improvement partner, Veolia North America, the City of Winnipeg’s Waste Water Treatment Plants, went on a path of discovery. Two significant tools of investigation were employed: 1. An Asset Management Maturity Assessment was conducted and 2. The City participated in the National Waste Water Benchmarking Initiative (NWWBI) Maintenance Task Force Survey implemented by AECOM. The Asset Management Maturity Assessment examined 8 fundamental areas of Maintenance Management and outlined positions of excellence that the City hoped to achieve both at the 1-year and 3-year mark from the date of assessment with 2017 being Year 1. The NWWBI Maintenance Task Force Survey examined 42 granular yet, over-lapping areas of Maintenance Management, with 18 of them reporting significant gaps for the City’s Waste Water Treatment Plants. The results of the two analyses were combined into eight (8) key Objectives and the underlying activities required to achieving them over the next three (3) years. These eight (8) Objectives are: 1. Implementation of Asset Condition Assessment Plan (ACAP) 2. Inventory Management Optimization Plan (IMOP) 3. Work Organization Improvement Plan (WOIP) 4. Implementation of Maintenance Quality Strategy (MQS) 5. Financial Capability Improvement Plan (FCIP) 6. Asset Registry Improvement Plan (ARIP) 7. Implementation of Document Management (DM) 8. Revision and Implementation of Asset Criticality Model (ACM)This presentation will examine the detailed plans for each objective, the inter-connectivity and alignment of the Objectives, the Road Map for the next 3 years, the processes for monitoring and continual improvement and the benefits of implementing this approach. Presented at MainTrain 2017 
  • Key Components of Electrical Power System Maintenance

    BoK Content Type: 
    Presentation Slides
    Presentation Paper
    BoK Content Source: 
    MainTrain 2017
    Original date: 
    Monday, April 10, 2017
    As I spend more and more time in and around maintenance, reliability and asset management professionals, and though my own experiences as both an end user and now a contractor, it has become more and more clear that there is a definitive gap in most maintenance and reliability plans....the electrical system. This is not to say that there is not maintenance being done, or that people are not recognizing that their electrical system is critical. But do you understand what you are doing? Do you understand why? Is what is being done correct? Is the budget that is set aside for electrical adequate or too much? How do you know? What are the best practices and where do you start? As discussed this is not a technical presentation but rather a look at a basic electrical system and where an end user can start in regards to assuring themselves that they are doing the right things. There are some new technologies that are in the market place that can assist in determining if there is a potential problem with parts of your system...this presentation is not about those. Alternatively it is about "the basics", learning to walk before you can run: Looking at the system as a whole and learning where most trouble areas are; Assisting end-users in looking at past test results and planning next steps; Determining what needs to be done based on predictive tests such as transformer oil samples or IR scans, and what can be pushed into next year’s budget; What cannot be skipped because, if it is, it may not only cause catastrophic plant failures but potential fatalities. In conclusion what this presentation will focus on is assisting Maintenance Management professionals to treat their electrical assets with the same care that they keep their mechanical assets. It is not overly technical and you do not have to be an electrical professional to understand or benefit.Presented at MainTrain 2017 
  • Case Study: Implementing a Lubrication Program – Cameco Cigar Lake Operation

    BoK Content Type: 
    Presentation Slides
    Webcast
    BoK Content Source: 
    MainTrain 2017
    Original date: 
    Thursday, March 16, 2017
    Cigar Lake is Cameco’s newest uranium mine located in northern Saskatchewan. During construction it was decided that a lubrication program needed to be implemented to ensure that critical assets were properly maintained. The mine offers challenges in that there is not just one plant or area to setup. There is a fleet of equipment both underground and surface with mobile and stationary assets. In addition there is diesel power generation and a fleet of freeze compressors installed. Each area presents its own challenges and opportunities when setting up a program.There are several aspects of a lubrication program that need to work together to ensure reliability. This presentation will share Cigar Lake’s journey from ground zero towards a world class lubrication program, one that was featured in Machinery Lubrication’s 2016 Lube Room Challenge edition.Why a lubrication program is needed will be discussed. In addition, the improvements made to program management, storage and inventory management, cleanliness, product standardization and sampling will be presented. Lastly, some of the specialized assets in use at the mine will be highlighted and discussed on how they fit into the program.